Акустические системы и пространственные характеристики звука. Акустические системы с круговой диаграммой направленности излучения (АС пространственного поля). Что такое однополосная АС

Эта статья появилась в результате переписки с одним из постоянных авторов американского журнала «STEREOFILE». Она не является рекомендацией к приобретению тех или иных акустических систем. Читатель найдет здесь интересные соображения о передаче звукового пространства современными акустическими системами.

Должность аудио обозревателя журнала «STEREOFILE» связана с прослушиванием почти всех акустических систем (АС), появляющихся на рынке. Немало времени мне приходилось заниматься и профессиональной записью музыки, как в качестве инженера, так и музыканта. Все это привело меня к мнению, что одним из важнейших свойств высококачественных АС является правильная передача звукового пространства, созданного при записи. Однако есть популярные модели АС, которые однозначно этому требованию не удовлетворяют - при этом намеренно.

Звуковое пространство - это пространство, создаваемое нашим воображением позади и между двумя АС, работающими в стерео. Иногда также применяется термин «звуковая сцена». При записи музыки немало труда уделяется созданию её звукового пространства, такого, чтобы при воспроизведении записи дома на бытовой стереосистеме музыканты «расположились» в определенном порядке. Ударная установка может «парить» где-то посередине между АС, гитарист чуть правее, фортепиано чуть слева, а певцы расставлены по сцене так, чтобы каждый занимал свою позицию. И действительно, если стереосистема правильно воспроизводит звуковое пространство, то закрыв глаза, можно «увидеть» каждого исполнителя.

Передача звукового пространства непосредственно связана с характеристикой направленности АС. Традиционно акустические системы с громкоговорителями на передней панели излучают звук только в одном направлении - к слушателю. Пара таких систем всю свою акустическую мощность отправляет к слушателю, не внося в звуковое пространство искажений, связанных с отражениями от стен, мебели около АС и т.п. Прослушивание в таких условиях позволяет передать запись так, как этого хотели звукорежиссер и музыканты.

Тем не менее, существуют АС, намеренно разработанные для искажения звукового пространства. Громкоговорители у таких АС располагаются не только на передней панели, а еще и сбоку и сзади. Такая АС излучает звук сразу во всех направлениях. Почти весь звук, доходящий до ушей слушателя, претерпевает отражения от стен. В оправдание такого воспроизведения звука приводится ошибочное утверждение, что поскольку реальные музыкальные инструменты излучают звук во всех направлениях, то для «естественного» звучания акустической системе нужно делать то же самое. Это абсолютно неверно, поскольку в то время как реальные инструменты излучают звук во всех направлениях, микрофоны, этот звук принимающие, «слышат» его только с одного направления. Чтобы передать звучание со всех направлений, понадобится полностью окружить инструмент бесконечным числом микрофонов. Сделать это невозможно. И не нужно - дело в том, что микрофон, направленный на музыкальный инструмент, воспринимает все его звучание, потому что мембрана микрофона воспринимает и прямой звук, и отражения, созданные инструментом в концертном зале (реверберация). Точно также слышит музыку человеческое ухо! В случае с АС прямого излучения слушатель воспринимает истинное соотношение прямого и отраженного звука - то, которое было во время записи. АС, излучающая звук во все стороны, меняет это соотношение. При этом запись уже нельзя услышать такой, какой она задумывалась - вы слышите отражения исходного отраженного звука от стен вашей комнаты. Реверберация реверберации. Согласитесь, что это полностью неестественная, искусственная обработка звука.

Акустические системы, излучающие звук во всех направлениях, искаженно передают звуковое пространство: звуковые образы инструментов неопределенны, а звуковая картинка не имеет ничего общего с оригиналом. Мне приходилось слушать собственные записи на таких АС и я был неприятно поражен, насколько искаженно они звучат по сравнению с АС прямого излучения. На массовом потребительском рынке весьма популярны американские АС, использующие многостороннюю направленность, но единственная их популярности в том, что многим людям не хватает знаний и опыта в таких вопросах как звуковое пространство, правильность воспроизведения и реальное звучание записи. Неосведомленным людям искажения, вносимые такими АС, кажутся привлекательными, потому что они «расширяют» звучание как при электронной обработке звука. Так как этой обработке подвергается каждая запись, воспроизводимая через АС, она становится утомительной и раздражает. Искажения звукового поля в таких АС часто заставляют поскорее продать свое приобретение и купить хорошие АС прямого излучения, которые годами будут верой и правдой приносить прослушивание музыки.

Мне хочется надеется, что я помог лучше понять связь правильности передачи звукового поля с конструкцией АС. Счастье аудиофила заключается в информативности - желаю удачных покупок!

Руководитель фирмы "Валанкон", один из инициаторов проведения и активный участник выставки "Российский Hi-End", рассказывает в статье об особенностях акустических систем с круговой диаграммой направленности, а также о вариантах их конструкции.

Основная задача электроакустического звуковоспроизведения (в самом идеализированном варианте) - обеспечить соответствие вторичного звукового поля в месте прослушивания первичному в месте, где происходит само действие. Находясь на улице, в лесу, в поле или в любом другом месте, прислушавшись, мы совершенно свободно можем локализовать источники этих звуков со всех сторон. Большинство источников звуков в окружающем нас мире близки к точечным (в сравнении с длиной волн звуковых колебаний). От этих источников исходит динамически меняющийся спектр частот и, в зависимости от местоположения источника звука над уровнем пола или земли, формируется полусферическая или сферическая волна. Возможно, мне возразят, приведя пример колеблющейся струны, но давайте возьмём электрогитару, на которой звукосниматель размещён ближе к концу струн. Вроде должны быть только высокие частоты, но звукосниматель передаёт широкий спектр частот. С каждого участка струны можно снять практически весь спектр частот колебаний.

Мысленно представим себе следующий эксперимент: в стене комнаты без окон на расстоянии, например, 2 м вырезаны два выходящих на улицу отверстия диаметром, равным диффузору громкоговорителя. Таким образом, мы получим эквивалент акустической системы, обладающей разной диаграммой направленности для различных частот, причём для высоких частот диаграмма будет уже. Мы сидим в комнате и стараемся понять, что происходит на улице. А теперь выйдем на улицу - звуки будут окружать нас.

Именно к воссозданию пространственного звукового поля и направлены усилия разработчиков акустических систем пространственного поля (АСПП). Большинство существующих систем - векторные, т. е. направленного излучения хотя бы в части полосы звуковых частот.

Задача озвучивания помещения состоит в том, чтобы наполнить его равномерным звуковым полем (давлением) во всех его точках без максимумов и провалов. Представим такой эксперимент - зеркальная комната, и её надо равномерно осветить. Если мы возьмём фонари направленного света (векторные излучатели), то получим отдельные лучи света, отражённые от зеркальных стен, будут максимумы и провалы. Если мы возьмём ненаправленную матовую лампу (или две разнесённые лампы), то получим заполненное более равномерно светом помещение. Из этого эксперимента мы получим вывод: менее направленное излучение звука от АС создаёт более равномерное звуковое поле.

Применяемые динамические головки, как источники звука, не позволяют воспроизвести весь слышимый диапазон частот без заметных искажений. Для решения этой проблемы выпускают полосовые головки, оптимизированные для своей полосы частот. Таким образом, АС состоят из нескольких головок, разнесённых на передней панели громкоговорителей, и на каждую из полосовых головок подаётся только часть спектра звукового сигнала, причём каждая из этих головок имеет свою диаграмму направленности.

В многополосных АС с разнесёнными динамическими головками существуют некоторые проблемы: разное время задержки сигналов в полосах из-за задержки в фильтрах кроссовера, неточечность излучения спектра звука, что приводит к смещению диаграммы направленности в области разделения полос. Различная диаграмма направленности полосовых излучателей, в зависимости от места размещения слушателей, приводит к тембральной окраске звучания музыкальных инструментов.

Вывод: вторичное звуковое поле принципиально не может соответствовать первичному - рис. 1. Возникает неизбежный вопрос - что делать?

Рис. 1. Вторичное звуковое поле принципиально не может соответствовать первичному

Сначала немного истории. В 1898 г. Оливером Лоджем изобретён динамический громкоговоритель, конструкция которого в основном сохранилась до сих пор. В 1948 г. на Лондонском "Радио-шоу" был представлен первый громкоговоритель "DualConcentric" фирмы Tannoy, это первый двухполосный коаксиальный излучатель, эквивалентный точечному.

Это действительно был прорыв, который сохраняет свои преимущества до настоящего времени, однако у коаксиального громкоговорителя с рупорным высокочастотным излучателем очень невелика область комфортного прослушивания из-за обострения направленности с ростом частоты сигнала. В коаксиальной конструкции высокочастотный излучатель находится в вершине конуса низкочастотного излучателя, который выполняет функцию подвижного(!) рупора, влияя на тембральную окраску в зависимости от положения слушателя.

Следующий шаг к созданию АСПП сделал инженер В. И. Шоров. Разработанная им акустическая система 30АС103П выпускалась заводом "Янтарь" и была описана в . Это двухполосная АС, где две динамические головки установлены в горизонтальной плоскости и направлены каждая на свой рассеивающий конус, переводя векторное излучение в скалярное (ненаправленное). Так как высокочастотный излучатель (головка) установлен над низкочастотным, то абсолютно точечного источника мы не получаем, но в горизонтальной плоскости получается источник с круговой диаграммой направленности.

Ещё одним шагом к созданию точечного всенаправленного (точнее, с диаграммой излучения) источника звука явилась конструкция (рис. 2), предложенная Ю. Грибановым и А. Клячиным.

Рис. 2. Конструкция АС Ю. Грибанова и А. Клячина

В ней на шести гранях корпуса АС установлены шесть пар головок. Эту АС нельзя назвать АСПП, так как присутствует векторная составляющая излучения. Но она является точечным всенаправленным источником звука. Есть ещё один недостаток: одинаковый сигнал излучается несколькими головками и невозможно добиться их синхронной работы и идентичности параметров. Это может приводить к потере тончайших нюансов звучания фонограммы.

Более полно идеологии АСПП соответствует так называемая контрапертурная АС (рис. 3), предложенная А. Виноградовым и А. Гайдаровым.

Рис. 3. Контрапертурная АС, предложенная А. Виноградовым и А. Гайдаровым

Создаётся виртуальный точечный всенаправленный источник звукового давления в полной полосе ЗЧ. Вертикальная составляющая звуковой волны несколько подавлена. Но мы опять возвращаемся к той же проблеме, что и в предыдущем случае, - не получается абсолютно симметричной структуры. На высоких частотах звуковые волны, излучаемые двумя головками, могут не совпадать по фазе, и возникшая интерференция приведёт к искажению исходного тембра. Искажения, конечно, меньше, чем в предыдущем способе (меньше головок), но проблема остаётся. Есть ещё одна проблема, связанная с подобной конструкцией. Использование двух широкополосных головок не всегда позволяет воспроизвести необходимый диапазон частот, даже если использовать коаксиальные (двухполосные). Необходимую трёхполосность в такой структуре реализовать не представляется возможным.

Принцип работы третьего типа АСПП легко понять из конструкции, условно изображённой на рис. 4. Исключение половины комплекта громкоговорителей контрапертурной АС позволяет избежать свойственных ей недостатков. Здесь также излучаются звуковые волны с круговой диаграммой направленности во всём диапазоне частот.

Рис. 4. Принцип работы третьего типа АСПП

В настоящее время наша фирма, имеющая ряд патентов на подобные АС, выпускает АСПП по двум структурам. Двухполосные, изготовленные по рис. 5, выпускаются в трёх объёмах: 5, 10 и 40 л для бытового использования в жилых комнатах. Для небольших кинозалов выпускается специальная АСПП мощностью 1000 Вт, обеспечивающая высокое звуковое давление. Структура АСПП, изображённая на рис. 6, реализует трёхполосный принцип разделения спектра, что существенно упрощает проблему подбора головок. Среди изделий фирмы есть и АСПП с объёмом корпуса 70 л, она рассчитана на высококачественное воспроизведение стереофонических фонограмм.

Рис. 5. Двухполосная АСПП

Рис. 6. Трёхполосная АСПП

Если говорить об особенностяхАСПП, то в сравнении с АС прямого излучения можно предположить некоторое ослабление атаки в звучании инструментов, так как звук излучается во все стороны, а не направленно на слушателей.

Но что даёт использование подобных АС в реальных помещениях? Создаётся ровное пространственное звуковое поле - где бы вы ни находились, везде звук тембрально одинаков. Стоите вы перед АС или сбоку - звук не меняется, вас окружает однородное звуковое поле. Получается очень комфортное озвучивание больших площадей: необыкновенное ощущение комфортности и эмоциональной вовлечённости создают среду, недостижимую с обычными АС. Показанные здесь три типа АСПП не исчерпывают всего многообразия различных вариантов.

Утверждать однозначно, что какой-то звук лучше или хуже другого при превышении некоего порога качества, в значительной степени бессмысленно: восприятие - это область эмоций, а они разные, поэтому есть множество усилителей и акустических систем. Но что однозначно - этот звук ближе к окружающему нас естественному.

В качестве примера рассмотрим выпускаемую нашей фирмой акустическую систему АС200. Эта система изготавливается в настольном и подвесном варианте с применением динамических головок, выпускаемых ООО "Лаборатория АСА" . Мы используем в качестве НЧ-головки модель В1602.8, а в качестве ВЧ-головки - Т252.4. На рис. 7 приведён упрощённый чертёж АС.

Рис. 7. Упрощённый чертёж АС

Подобная вертикальная конструкция АС позволяет использовать в качестве корпуса трубу, что выгодно отличает её от стандартных кубических корпусов. В качестве корпуса 11 (рис. 8) выбрана пластиковая труба ПВХ 200x4,9x2000, используемая, в частности, в канализационных системах. Одной трубы длиной 2 м достаточно для двух АС. Кольца 1, 2, 6, 10 изготавливают из МДФ толщиной 16 мм. На рис. 9 приведён чертёж деталей 2, 6. Детали крепят к корпусу потайными саморезами 3x19 мм (3-4 шт.). На деталь 2, установленную в нижней части корпуса, крепится фильтр 9, она имеет отверстие для вывода сигнального провода. Деталь 6, на которой установлены динамические головки, крепится в корпусе 11 с условием, что верхняя плоскость кольца установлена заподлицо с нижним краем окон корпуса 11. Для прокладки провода, идущего к ВЧ-головке 4, в одно из крепёжных отверстий НЧ-головки 5 не устанавливают саморез, а пропускают провод на ВЧ-головку, которую закрепляют любым способом (на бонках, на конструкции, спаянной из медной проволоки диаметром 1...1,5 мм) и фиксируют саморезами, которые крепят НЧ-головку. Основное требование - это обеспечение необходимого зазора между диффузором ВЧ-головки и рассеивающим конусом 3. Конус, показанный на рис. 10, можно изготовить из МДФ или толстого пластика. Для придания жёсткости пластиковый конус можно запенить.

Рис. 8. Корпус АС - пластиковая труба ПВХ 200x4,9x2000

Рис. 9. Чертёж деталей 2, 6

Рис. 10. Пластиковый конус

Желательна глянцевая, лакированная поверхность конуса для уменьшения потерь на высоких частотах. Конус фиксируется на детали 2 с помощью клея.

В качестве звукопоглотителя используется тонкий синтепон, который набивают плотно; критерием плотности набивки является отсутствие бубнения в низкочастотном регистре. Можно попробовать насыпать слой толщиной 5...10 см мелкого активированного угля, который обязательно сверху закрыть синтепоном.

Детали 1 и 10 определяют внешний вид, их можно покрасить или фанеровать. Деталь 1 крепится к детали 2 на шкантах или мелкими саморезами, а деталь 10 - саморезами, с выпуском соединительного кабеля.

Для придания АС товарного вида можно пошить "чулок" из тонкой синтетической ткани и прикрепить её степлером к верхней и нижней детали 2.

Схема разделительного фильтра показана на рис. 11.

Рис. 11. Схема разделительного фильтра

Катушку индуктивности L1 наматывают эмалированным проводом диаметром 0,5...0,8 мм на пластиковую трубу диаметром 25 мм, ширинанамотки - 20 мм. 120 витков провода длиной 10,2 м создают индуктивность 0,3 мГн. Конденсатор С1 - К73-17 или К78-2 (лучше). Резистор R1 сопротивлением 0,2 Ом изготавливают из высокоомной проволоки: берут кусок длиной несколько метров, измеряют его сопротивление и откусывают соответствующую нужному сопротивлению часть. Диаметр проволоки должен быть не менее 0,2 мм. Фазу (полярность) включения головок определяют опытным путём. Здесь на схеме показана полярность, оптимизированная при измерении на "розовом" шуме.

Литература

1. Шоров В., Янков В. Акустическая система для самостоятельного изготовления. - Радио, 1997, № 4, с. 12-14.

В обзорах и тестах мы уделяем большое внимание описанию акустических систем. Если подумать, то ничего удивительного в этом нет. Прекрасно понимая важность качественного источника звука и усилителя в стереосистеме или в домашнем кинотеатре, мы все же уверены, что наибольшее влияние на звуковые характеристики аудиокомплекса оказывают именно колонки. Они являются последним звеном в сложной цепи преобразования комбинации нулей и единиц, из которых состоит запись на компакт-диске, в механические колебания воздуха, которые мы и называем звуком. Чем корректнее колонки справляются со своей задачей, тем более качественный звук мы слышим. Впрочем, вопрос «качества звука» - весьма спорный, поскольку качество - понятие субъективное. Вернемся к этому вопросу несколько позже, а для начала познакомимся с основными конструктивными особенностями современных акустических систем (АС). Кроме того, в данном материале мы хотим разобраться с таким интересным вопросом, как направленность акустических систем различной конструкции, и какой из них отдать предпочтение для решения той или иной задачи.

Прежде чем перейти к описанию конструкции акустических систем, необходимо разобраться с терминологией, чтобы не возникало путаницы в дальнейшем. Итак, полный акустический преобразователь, предназначенный для излучения звука в окружающую среду и состоящий из динамических головок, акустического оформления, разделительных фильтров и прочих электрических устройств, мы будем называть акустической системой, звуковой колонкой или громкоговорителем. Обратите внимание на последнее название. В английском языке термином «loudspeaker», т. е. «громкоговоритель», принято называть полную акустическую систему, в то время как в отечественной литературе этим словом частенько называли отдельные динамические головки. Сами динамические головки принято называть также драйверами или динамиками. Этих же терминов будем придерживаться и мы в нашем описании.

ДИНАМИЧЕСКИЕ ГОЛОВКИ

На сегодняшний день в мире существует множество разнообразных конструкций громкоговорителей, базирующихся на самых различных физических принципах излучения звука (электростатические, плазменные, пьезокерамические и пр.). К рассказу об экзотических конструкциях громкоговорителей мы постараемся вернуться в одном из последующих выпусков V&A, сегодня же сосредоточим наше внимание на самых распространенных акустических системах - с электродинамическими катушечными преобразователями.
Задачей электродинамической акустической головки является, как вы знаете, преобразование электрических импульсов в механические колебания диффузора динамика, которые становятся источниками распространения звуковых волн.
Принцип действия электродинамического преобразователя прост, как все гениальное. Переменный электрический ток, проходя через звуковую катушку, является источником переменного магнитного поля, которое, в свою очередь, вступает во взаимодействие с полем постоянного магнита. Результатом этого взаимодействия становится появление силы, которая приводит в движение звуковую катушку, жестко соединенную с диффузором динамика.
Основными элементами электродинамической головки являются диффузор с пылезащитным колпачком и гибким подвесом, звуковая катушка, магнитная система, диффузородержатель (корзина) и центрирующая шайба.
Подробное описание перечисленных элементов конструкции электродинамического драйвера проведем для низкочастотной головки, а затем рассмотрим нюансы, характерные для средне- и высокочастотных динамиков.

Диффузор

Задача диффузора электродинамической головки очень важна - он приводит в движение массы воздуха, его перемещение вызывает появление распространяющейся в пространстве звуковой волны. При этом диффузор должен обеспечивать отсутствие нелинейных искажений, вызываемых изгибными волнами на его поверхности, и максимально линейную амплитудно-частотную характеристику в рабочем диапазоне. Большинство диафрагм в современных низкочастотных динамиках имеют форму конуса (их так и называют - конические). Впрочем, форма обычного конуса с прямолинейной образующей оказалась малоподходящей для производства НЧ динамиков, поскольку такие диффузоры не обладают устойчивостью к появлению изгибных волн. Действительно, для обеспечения необходимого уровня звукового давления на низких частотах требуется, чтобы диффузор претерпевал значительные смещения в пространстве (±10 мм, а иногда и больше). При таких значительных смещениях поверхность диффузора начинает изгибаться, а при повышении частоты края диафрагмы просто не успевают смещаться вслед за перемещением звуковой катушки, вследствие чего рабочая поверхность диффузора ограничивается небольшой центральной областью. Для того чтобы избежать этих двух напастей (сужение эффективной поверхности излучения диффузора и появление изгибных волн на поверхности), производители очень тщательно относятся к разработке формы поверхности излучателя. В частности, используются диффузоры в форме конуса с образующими в виде дуги окружности, а также с другими, еще более сложными конфигурациями. Благо современные методы математического моделирования позволяют достаточно точно рассчитать оптимальную форму излучателя. Главное, чтобы в результате она оказалась не слишком сложной для производства. Многие применяют конусы с переменным сечением стенок (толщина диафрагмы больше в центре и уменьшается к краям), снабжают диафрагмы специальными ребрами жесткости (радиальными или концентрическими) и естественно тщательно подбирают материалы для их производства.
О материалах, кстати, хотелось бы рассказать чуть подробнее. С самого начала при производстве диафрагм динамических головок использовали бумагу со специальными пропитками. Надо сказать, что натуральная длинноволокнистая целлюлоза до сих пор остается одним из самых популярных материалов. Естественно, называть такие диффузоры бумажными сегодня уже не совсем корректно, поскольку в них помимо специальной пропитки, повышающей жесткость, долговечность и влагозащищенность целлюлозной массы, часто применяются различные добавки, такие, как волокна льна, углестекловолокно, графит и даже металл. В общей сложности «бумажный» диффузор громкоговорителя может содержать до 15 различных добавок, призванных улучшить его физические свойства.

Звуковая катушка

Звуковые катушки современных динамиков являются достаточно технологичными изделиями, хотя на первый взгляд ничего сложного в них нет. Однако это только на первый взгляд. Начав разбираться, понимаешь, что все не так просто, как хотелось бы.
Во-первых, звуковая катушка должна иметь высокие характеристики температурной стабильности. Это особенно важно в мощных системах, где при звуковоспроизведении выделяется большое количество тепла. Нагревание может привести к механическому разрушению катушки, поэтому при их производстве применяются специальные термостойкие клеи и лаки. Кроме того, нагрев, как известно из школьного курса физики, изменяет электрическое сопротивление провода, которым намотана катушка. Изменение сопротивления естественно приводит к нарушению рассчитанных для магнитной системы параметров, что воспринимается на слух как искажения в воспроизводимом звуке. Для того чтобы снизить нагрев звуковых катушек применяют, как мы уже упоминали, специальные массивные металлические пылезащитные колпачки, а также делают вентилируемые каркасы, в которых для улучшения теплоотвода сверлят специальные отверстия. Еще одним способом охлаждения служит заполнение магнитного зазора специальной ферромагнитной жидкостью, но об этом мы расскажем чуть позже, в пункте, посвященном магнитной системе.
Звуковые катушки наматываются проводом круглого или прямоугольного сечения. Количество слоев намотки, как правило, 2 или 4. Прямоугольное сечение провода в принципе более предпочтительно, поскольку позволяет сделать намотку максимально плотной, а, следовательно, увеличить эффективность взаимодействия катушки с постоянным магнитом. Однако же с увеличением плотности намотки ухудшается охлаждение звуковой катушки, а, следовательно, нарушается температурная стабильность. В результате производители вынуждены искать компромисс, подбирая оптимальное сочетание параметров. Вообще, говоря отвлеченно от технических деталей, нужно признать, что производство высококачественных акустических систем - это постоянный поиск компромисса между соблюдением ряда взаимоисключающих условий. Некоторые из них мы уже упомянули, а некоторые будут упомянуты в дальнейшем. Искусство разработчика заключается в поиске оптимального решения этой сложнейшей задачи с рядом переменных, влияющих друг на друга. Однако вернемся к звуковым катушкам. Естественно, что их температурную стабильность можно увеличить, используя для намотки провод большего сечения, а, следовательно, и с лучшей теплоотдачей. Впрочем, такое решение подходит только для мощных акустических систем, поскольку неизбежно увеличит общую массу подвижной системы, что, как мы уже говорили, крайне негативно сказывается на характеристиках воспроизводимого звука.
Помимо температурной стабильности звуковой катушки производители динамиков стремятся также соблюсти пространственную однородность магнитного поля в зазоре. Дело в том, что при больших амплитудах перемещения диффузора катушка может частично выходить из магнитного зазора в продольном направлении, попадая при этом в область нестабильного магнитного поля. Для предотвращения этого многие производители стремятся сделать катушку максимально короткой, а зазор максимально длинным (естественно, при сохранении минимально возможной толщины).

Магнитная система

Магнитная система динамической головки призвана создавать постоянное магнитное поле, которое взаимодействует с переменным полем, создаваемым током, проходящим через звуковую катушку. В большинстве современных динамических головок применяются кольцевые магниты, имеющие форму тора. Естественно, что для увеличения эффективности работы электродинамического преобразователя необходимо, чтобы магнитная система создавала максимально возможную напряженность магнитного поля в зазоре. Для этого разрабатываются высокоэффективные магнитные материалы (в частности в последнее время получили широкое распространение магниты на основе сплава неодим-железо-бор). Как мы уже говорили, для того, чтобы сохранить линейные частотные характеристики в широком диапазоне подводимой мощности, катушки необходимо хорошо охлаждать. Вместе с тем увеличение воздушного зазора между катушкой и магнитной системой нежелательно, поскольку это снижает эффективность их взаимодействия. Для решения этой проблемы магнитный зазор иногда заполняют специа
ьной ферромагнитной жидкостью, которая представляет собой вязкую суспензию с помещенными в нее магнитными частицами. Ферромагнитная жидкость обладает существенно большей теплоемкостью по сравнению с воздухом и, следовательно, позволяет гораздо эффективнее охлаждать звуковую катушку.
Не стоит забывать и о том, что в современных системах домашнего кинотеатра акустические системы зачастую работают в непосредственной близости от экрана телевизора. Магнитное поле динамика может вызывать искажения на экране. Для того чтобы избежать этого отвратительного явления, акустические системы центрального канала (как расположенные ближе всего к телевизору), а зачастую и все остальные громкоговорители, включая сабвуфер, снабжают магнитным экранированием, т. е. помещают магнитную систему в специальную «колбу», изготовленную из экранирующего материала, либо же включают в систему дополнительный магнит обратной полярности, который гасит магнитное поле основного магнита.

Диффузородержатель

Диффузородержатель, как следует из названия, представляет собой конструкцию, несущую всю систему динамической головки. За характерный внешний вид диффузородержатели получили также и другое название - корзина. К широкой части корзины при помощи подвеса крепится подвижная часть драйвера, а к узкой - магнитная система. Естественно, корзина динамика должна вносить минимальный вклад в воспроизведение звука, поэтому ее конструкция должна быть жесткой и эффективно гасить возникающие резонансы. Кроме того, ребра жесткости диффузородержателя должны быть максимально тонкими, чтобы свести к минимуму отраженную от них звуковую волну. При несоблюдении этого условия отраженная волна будет оказывать существенное влияние на работу динамической головки, увеличивая общую упругость системы и, следовательно, снижая эффективность электродинамического преобразователя.

Центрирующая шайба

Последним из упомянутых нами в начале статьи элементом динамика является центрирующая шайба. Основной функцией центрирующей шайбы является четкое позиционирование звуковой катушки в зазоре. Она должна обеспечить строго поступательное движение катушки, поскольку малейший перекос может привести к ее заклиниванию в магнитном зазоре. Центрирующая шайба должна обладать линейными характеристиками упругости во всем диапазоне смещения диффузора и, как правило, представляет собой гофрированную поверхность, имеющую синусоидальный профиль.

Среднечастотные динамики

Все, о чем мы говорили до сих пор, справедливо в первую очередь для динамиков, предназначенных для воспроизведения низких частот. Впрочем, основные элементы конструкции СЧ и ВЧ динамиков точно такие же. Разница заключается в конструктивном исполнении.
Разработка и конструирование среднечастотных динамиков является, наверное, одной из важнейших задач при производстве акустической системы. Во-первых, именно на область средних частот приходится большая часть воспроизводимого звука. Во-вторых, человеческий слух обладает наибольшей чувствительностью именно в среднечастотном диапазоне. Наконец, нельзя не отметить, что именно к среднему частотному диапазону относится человеческий голос (по крайней мере большая часть из его тембров). Последнее обстоятельство крайне важно учитывать, ведь человек слышит голос в реальной жизни постоянно, и наш мозг прекрасно научился анализировать все мельчайшие нюансы его звучания. Малейшее несоответствие, и человек, даже не считающий себя профессиональным ценителем классной аудиотехники, почувствует фальшь, а, следовательно, удовольствие от прослушивания будет испорчено.
Конструкция СЧ динамиков в целом аналогична низкочастотникам, за исключением того, что они, как правило, имеют меньшие геометрические размеры диафрагмы (это позволяет расширить диаграмму направленности в верхней части воспроизводимого диапазона). Большинство среднечастотников имеют конусообразную диафрагму, хотя иногда применяются и купольные динамики (как правило, для озвучивания верхней части среднечастотного диапазона), которые имеют более широкую характеристику направленности в области высоких частот и могут иметь как жесткие диафрагмы, изготовленные из алюминиевой бериллиевой или титановой фольги, так и мягкие, выполненные из шелка, целлюлозы, полипропилена и т. д.

Высокочастотные динамики

В последнее время с появлением и успешным развитием цифровых форматов записи звука требования, предъявляемые потребителями, а, следовательно, и производителями, к высокочастотным динамикам существенно возросли. Мы связываем это в первую очередь именно с развитием цифровых технологий, поскольку раньше, когда были распространены только записи на магнитной ленте, частотный диапазон фонограмм был ограничен сверху значениями 12-15 кГц. Выше не помогали никакие, даже самые продвинутые системы (включая пресловутую систему динамического подмагничивания HX Pro фирмы Dolby). Сейчас ситуация кардинально изменилась. Обычный компакт-диск без проблем обеспечивает звуковой сигнал в диапазоне 20-20 000 Гц, а если вспомнить про современные форматы высокого разрешения SACD и DVD-Audio, то и гораздо выше.
При изготовлении ВЧ-динамиков (твитеров) в подавляющем большинстве случаев используются купольные мембраны. В этом нет ничего удивительного, поскольку куполообразная форма обеспечивает более широкую диаграмму направленности по сравнению с конусом. Впрочем, на самых высоких частотах характеристика направленности в любом случае представляла бы собой узкий луч, если бы ее не расширяли искусственно при помощи звуковых рассекателей, устанавливаемых перед твитером, либо специального оформления высокочастотника в виде акустической линзы.
Несмотря на разительные внешние отличия, конструкция твитера во многом совпадает с низко- и среднечастотниками. Следует отметить, что подвес диффузора в них выполняется из того же материала, что и сам диффузор. Кроме того, в высокочастотниках отсутствует центрирующая шайба. Вследствие малых амплитуд колебаний подвижной системы такое решение представляется вполне оправданным.
Диафрагмы твитеров можно условно разделить на два класса - мягкие и жесткие. Жесткие купола изготавливаются обычно из фольги «крылатых» металлов (алюминий, титан и пр.). Мягкие же диафрагмы могут быть выполнены из ткани (как правило, шелка) со специальной пропиткой полипропилена и т. д. Интересно, что для придания мягким купольным твитерам необходимых физических свойств многие производители идут на крайне дорогостоящую процедуру осаждения из паровой фазы на его поверхность частиц бора, бериллия, золота и даже алмаза.

АКУСТИЧЕСКОЕ ОФОРМЛЕНИЕ

Итак, теперь мы более или менее представляем себе устройство динамических головок громкоговорителей и, понимаем, на какие ухищрения приходится идти производителям для того, чтобы повысить качество звуковоспроизведения, а, следовательно, доставить нам с вами максимум удовольствия от прослушивания. Однако, взяв отдельный динамик (пускай даже самого высокого качества) и подключив его к усилителю, мы обнаружим, что его звучание ужасно! В нем абсолютно отсутствуют привычные нам тембры и низкочастотные составляющие. Объяснение этого вопиющего факта заключается в том, что динамическая головка излучает не только вперед, но и назад. Если перед диффузором при его колебательном движении образуется зона сжатия воздуха, то позади него обязательно возникнет зона разрежения, и наоборот. При достаточно высоких частотах (т. е. при длинах звуковой волны существенно меньших геометрических размеров диффузора) звуковая волна не успевает обогнуть диафрагму за один период колебания, и ничего плохого со звуком не происходит. Однако при уменьшении частоты длина волны становится сравнима с диаметром диффузора и прямая и обратная волна, суммируясь, гасят друг друга (для диффузора диаметром 20 см частота, на которой начинает происходить это явление, составляет порядка 1 кГц). Данный эффект называется акустическим коротким замыканием и для настоящего аудиофила имеет последствия не менее катастрофические, чем короткое замыкание в домашней электросети. К счастью, данная проблема имеет достаточно простое решение, а именно, необходимо физически изолировать переднюю и заднюю поверхности диффузора. Для этого динамическую головку можно, к примеру, закрепить в стенке ящика, что собственно и делается в традиционных акустических системах. Этот «ящик», или если следовать правильной терминологии, «корпус» громкоговорителя принято называть акустическим оформлением.
Простейшим видом акустического оформления является герметично закрытый корпус акустической системы. Этот вид так и называется «закрытый корпус». Такая система отличается простотой конструкции и отменными переходными характеристиками (хорошей атакой и четкими акцентами), которые обусловлены высокой упругостью колебательной системы диффузор - внутренний объем корпуса. При всех своих преимуществах подобное акустическое оформление имеет и ряд недостатков. Одним из них является снижение эффективности работы громкоговорителя. Надо сказать, что электродинамический преобразователь и так крайне малоэффективное устройство (в лучшем случае в звуковую мощность удается преобразовать лишь около 3 % подводимой электрической мощности - остальное превращается в тепло). В закрытом же корпусе эта эффективность еще ниже, поскольку энергия, излучаемая обратной стороной диффузора, просто теряется. Кроме того динамик, помещенный в закрытый корпус, представляет собой колебательную систему с достаточно высокой резонансной частотой. При воспроизведении звука ниже этой частоты уровень звукового давления резко падает. Естественно, что значение резонансной частоты громкоговорителя сильно зависит от внутреннего объема его корпуса, но для озвучивания низкочастотной области этот объем должен быть очень большим, что неприемлемо для большинства людей в силу эстетических соображений.
Другая возможность добиться воспроизведения глубокого баса от закрытых акустических систем заключается в существенном усилении уровня низкочастотного сигнала по сравнению со средне- и высокочастотной составляющими. В традиционных стерео и кинотеатральных комплектах выполнение данного условия практически невозможно, а вот в активных акустических системах (т. е. громкоговорителях с собственными встроенными усилителями) вполне может быть реализовано. В частности, по такому принципу работают активные полочные акустические системы марки ATC - одни из лучших полочных мониторов, которые нам когда-нибудь доводилось слышать.
В более массовых акустических системах (да и не только в массовых, если уж быть до конца честными) производители вынуждены искать способ снижения нижней резонансной частоты громкоговорителя и увеличения его эффективности. Такое решение было найдено давно - еще в 30-е годы прошлого столетия, и имя ему фазоинвертор. Про фазоинверторное акустическое оформление в специализированной прессе сказано очень много - хорошего и плохого, по делу и не совсем. Мы не будем вдаваться в детали (в конце концов, для этого в нашем журнале регулярно публикуются масштабные тесты акустических систем), а просто констатируем факты. Во-первых, фазоинвертор позволяет реально повысить отдачу громкоговорителя в области низких частот. Во-вторых, более 90 % акустических систем, ориентированных на домашнее (не профессиональное) применение, имеют акустическое оформление типа «фазоинвертор», и не считаться с этим обстоятельством было бы по меньшей мере глупо.
Итак, что же представляет собой фазоинвертор? А представляет он собой обычное отверстие (порт), соединяющий внутренний объем корпуса громкоговорителя с внешним миром. В этот порт обычно вставляют кусок трубы, который позволяет увеличить объем воздуха, участвующего в процессе инвертирования фазы звуковой волны.
Фазоинвертор является, по сути, простейшим акустическим резонатором, т. е. представляет собой колебательную систему с упругим элементом, роль которого играет воздух в трубе. На определенных частотах в этой колебательной системе появляется резонанс, причем параметры фазоинвертора рассчитываются таким образом, чтобы резонансная звуковая волна излучалась в той же фазе, что и прямая волна, излучаемая диффузором. Иными словами, это нехитрое устройство производит инверсию (обращение) звуковой волны, которая излучается тыльной стороной диффузора. Фазоинвертор позволяет снизить значение нижней граничной частоты громкоговорителя и усилить звуковое давление на низких частотах за счет суммирования прямой волны, излучаемой фронтальной поверхностью диффузора и обратной волны, «обращенной» фазоинвертором.
Достоинства фазоинверторных акустических систем следуют из приведенных выше рассуждений. При одинаковых размерах они способны воспроизводить гораздо более низкие частоты по сравнению с АС в закрытом корпусе. К недостаткам фазоинверторных конструкций можно отнести ухудшение переходных характеристик в области частот, на которые настроен фазоинвертор. Поскольку фазоинвертор является акустическим резонатором, то контролировать излучаемый им звук достаточно трудно. На слух это воспринимается как ухудшение детальности, т. е. более размытое звучание низких частот. Еще одним минусом фазоинверторных конструкций являются нелинейные звуковые искажения, вызванные турбулентными завихрениями воздуха, «выдуваемого» из порта. Для того, чтобы минимизировать этот эффект, производители придают выходным раструбам специальную форму, а также наносят на их поверхность специальные канавки, препятствующие возникновению воздушных завихрений.
Частным случаем фазоинверторного акустического оформления можно считать громкоговорители с пассивным излучателем (такие конструкции, к примеру, очень любит американская компания Boston Acoustics). Вместо того чтобы вставлять в порт фазоинвертора трубу, он просто закрывается еще одним излучателем, аналогичным основному низкочастотнику, но лишенным звуковой катушки и магнитной системы. Настройка резонансной частоты такой конструкции осуществляется производителем путем изменения массы пассивного излучателя. Как правило, в акустических системах используется один порт фазоинвертора, но в отдельных моделях применяются двух- и даже трехпортовые конструкции. В зависимости от конструкции порт фазоинвертора выводится на переднюю или на заднюю панель громкоговорителя. В отдельных случаях порт фазоинвертора направлен вниз - в этом случае производитель предусматривает специальную подставку, обеспечивающую необходимый воздушный зазор между корпусом АС и полом.

РАСПОЛОЖЕНИЕ ДИНАМИКОВ НА КОРПУСЕ АКУСТИЧЕСКОЙ СИСТЕМЫ
И ХАРАКТЕРИСТИКИ НАПРАВЛЕННОСТИ

Мы уже имели возможность убедиться, что динамические головки, предназначенные для воспроизведения низких, средних и высоких частот, имеют ряд конструктивных отличий. Эти отличия не позволяют (по крайней мере за приемлемые деньги) изготовить электродинамический преобразователь, способный качественно воспроизводить звук во всем слышимом частотном диапазоне. В связи с этим в конструкции акустических систем применяется несколько динамиков, каждый из которых отвечает за свою область воспроизводимых частот. Для того чтобы оградить динамики от сигналов с частотой, на воспроизведение которой они не рассчитаны, а также скорректировать фазовые сдвиги между ними, в конструкции акустических систем применяют разделительные фильтры. Впрочем, подробно останавливаться на их конструкции в данном материале мы не будем.

Акустические системы с фронтальным расположением динамиков

Традиционным считается расположение динамиков в ряд на фронтальной панели акустической системы. На первый взгляд это решение представляется самым очевидным. Казалось бы, где же еще располагаться динамикам, как не на панели, направленной к слушателю? Все правильно, но не совсем. Впрочем, об этом чуть ниже…
Итак, что же происходит с характеристиками направленности звука, излучаемого акустической системой, с традиционным фронтальным расположением динамиков. На самом деле однозначный ответ на этот вопрос дать довольно трудно, поскольку на разных частотах направленность такой акустической системы тоже будет различной.
На низких частотах длина звуковой волны существенно превышает размеры динамиков, как, впрочем, и корпуса акустической системы. В связи с этим звук колонки с фронтальным расположением диффузоров на низких частотах будет очень слабо направленным. Диаграмма направленности является практически круговой. Кстати, именно с этим обстоятельством связано то, что сабвуфер в кинотеатральной системе можно помещать практически в любой точке комнаты прослушивания. Частоты, на которых он работает, не дают остро выраженной диаграммы направленности, и локализовать их источник на слух невозможно.
С увеличением частоты длина звуковой волны уменьшается, и диаграмма направленности вытягивается во фронтальном направлении. На высоких частотах звук можно считать остро направленным во фронтальном направлении (тонкими эффектами, такими, как боковые лепестки диаграммы направленности, а также дифракционные явления мы, в наших рассуждениях пренебрегаем), причем чем выше частота, тем более острую направленность имеет звучание.
При воспроизведении звука повышенная направленность акустических систем имеет определенные преимущества. В частности, она позволяет существенно повысить пространственное разрешение виртуальных звуковых источников, позволяет минимизировать отражения от стен комнаты прослушивания, т. е. делает звуковые образы более четкими, позволяя провести их точную локализацию в трехмерном пространстве. Все это, конечно, очень здорово в теории, но на практике далеко не так волшебно. Во-первых, качественную звуковую картину сможет получить только слушатель, сидящий строго в одной из вершин пресловутого стереотреугольника (речь идет о 2-канальном воспроизведении), т. е. на пересечении акустических осей громкоговорителей. При минимальном отклонении от этой точки звуковая картина будет серьезно нарушена. Естественно, что о прослушивании музыки или просмотре кинофильма в компании речь уже не идет.
Вот почему производители стараются различными методами расширить диаграмму направленности на высоких частотах. Для этих целей могут применяться специальные акустические рассекатели, устанавливаемые перед ВЧ-динамиком, либо специально разработанные оформления твитера в виде рупора или же звукового волновода. Данные ухищрения позволяют стабилизировать направленность на высоких частотах и управлять ее шириной в соответствии с пожеланиями производителей.
Не стоит забывать и о том, что динамики акустической системы, расположенные в ряд на ее фронтальной панели, представляют собой некое подобие антенной решетки, которая также имеет определенные характеристики направленности излучения. Если мы говорим о традиционных громкоговорителях, где динамики расположены в ряд один над другим, то такой громкоговоритель имеет выраженную характеристику направленности по вертикали, но при этом слабо направлен по горизонтали. Это, кстати, как нельзя лучше укладывается в требования THX к акустическим системам в домашнем кинотеатре, в соответствии с которым громкоговорители должны иметь строгую направленность в вертикальном направлении, чтобы минимизировать влияние звуковых отражений от пола и потолка и при этом иметь широкую дисперсию по горизонтали. Однако в домашнем кинотеатре, как вы знаете, необходима акустическая система центрального канала, которую большинство производителей предпочитает делать горизонтальной. Это существенно упрощает инсталляцию колонки (обычно под или над телевизором), но приводит к нежелательному результату с точки зрения акустики. Динамики такой колонки, расположенные в ряд горизонтально, излучают звук, слабо направленный по вертикали, но с выраженной характеристикой направленности по горизонтали. С точки зрения THX подобное поведение абсолютно недопустимо, поэтому центральный канал по версии лаборатории Джорджа Лукаса должен быть вертикальным, таким же, как и фронтальная стереопара. Если быть более точным, то в соответствии с этими требованиями все 5 акустических систем в домашнем кинотеатре должны быть одинаковыми, но это уже тема совершенно другой статьи.
К счастью, вертикальное расположение корпуса АС - не единственная возможность стабилизировать диаграмму направленности центрального канала. Здесь на помощь могут прийти все те же рупоры и звуковые волноводы, а также специальное расположение динамиков (многие производители выносят ВЧ динамик в отдельный корпус, который размещается в верхней части горизонтальной АС центрального канала).

Коаксиальные излучатели

Другой возможностью стабилизировать диаграмму направленности является конструирование так называемых коаксиальных звуковых излучателей, т. е. динамиков, в которых вуфер и твитер расположены на одной оси и звук излучается практически из одной точки. Несмотря на явные преимущества подобной схемы, акустических систем, в которых бы она применялась, не так много, и связано это в первую очередь с трудностями реализации коаксиальной электродинамической головки. Наибольших успехов в их производстве добились английские компании Tannoy и KEF, причем именно KEF наиболее активно популяризирует принцип коаксиального звукового излучателя, который имеет фирменное название UniQ. Модуль UniQ на сегодняшний день используется практически во всех акустических системах, выпускаемых компанией, за исключением бюджетных линеек. Уникальность его конструкции заключается в том, что коаксиальные средне- и высокочастотник собраны на одной магнитной системе, при этом диффузор вуфера выполняет роль акустического рупора для расположенного в его центре твитера. Согласитесь, идея очень оригинальная и, как показали многочисленные тесты, проводившиеся экспертами нашего журнала, работоспособная. В частности, акустические системы KEF, оснащенные модулем UniQ, обладают исключительными пространственными характеристиками воспроизводимого звука. Помимо улучшения характеристики направленности коаксиальное размещение динамиков дает еще одно преимущество, позволяет избежать фазовой задержки между сигналами, излучаемыми разными динамиками. Эта задержка происходит из-за того, что динамики расположены на разной высоте, а, следовательно, звуковые волны, излучаемые ими, преодолевают разные расстояния на пути к точке прослушивания. Кстати, некоторые компании специально изготавливают фронтальные панели акустических систем наклонными. Это позволяет минимизировать разницу расстояний между различными динамиками и точкой прослушивания.

Биполярные АС

Биполярные громкоговорители представляют собой «сдвоенные» акустические системы, в которых имеется 2 комплекта динамиков, расположенных на фронтальной и тыловой панелях и воспроизводящих звук в одной фазе. Подобное расположение динамиков позволяет получить практически круговую диаграмму направленности на низких и средних частотах. Характеристика направленности биполярных АС на высоких частотах имеет форму восьмерки.
Таким образом, биполярные АС позволяют воспроизводить практически ненаправленное, так называемое диффузное звучание, которое при определенных условиях неплохо подходит, например, при озвучивании тыловых каналов в домашнем кинотеатре. В частности, при невозможности выделить под домашний кинозал акустически обработанную комнату больших размеров, ненаправленный звук тыловых биполярных АС можно признать оптимальным, поскольку он обладает меньшей привязкой к акустическим системам и меньше подвержен вредному влиянию отражений от стен и потолка. Эти отражения распределяются равномерно по различным направлениям распространения звука и выражены не очень явно.

Дипольные АС

Дипольными акустическими системами называются такие громкоговорители, которые имеют излучатели на фронтальной и тыловой панелях, но работают они при этом в противофазе. К дипольным АС относятся плоские панели, электростатические и электромагнитные АС, а также специально сконструированные электродинамические колонки. Диаграмма направленности дипольных громкоговорителей, как на низких и средних, так и на высоких частотах, имеет форму восьмерки. Эти акустические системы эффективно излучают звук во фронтальном и тыловом направлении. По бокам же прямая и обратная волны гасят друг друга, и звук практически отсутствует.

Дипольные громкоговорители хорошо подходят для применения в небольших помещениях или при установке в непосредственной близости от стен. Поскольку их звук практически не распространяется в боковом направлении, то такая конструкция позволяет свести к минимуму отражения от боковых стен комнаты прослушивания.
Очень необычную конструкцию дипольной акустической системы предложила знаменитая датская компания JAMO, в своей новейшей разработке - акустической системе JAMO Reference 909. Проведя серию весьма логичных рассуждений, специалисты компании пришли к выводу, что одним из основных препятствий на пути к качественному звуку является корпус громкоговорителя, который обладает собственной резонансной частотой, а также склонен к появлению вибраций, негативно сказывающихся на параметрах звуковоспроизведения. В результате этих рассуждений на свет появилась колонка, в которой производители обошлись вообще без корпуса. Как следует из наших предыдущих рассуждений, у акустической системы без корпуса должны непременно возникнуть проблемы с воспроизведением низких частот, поскольку на них будет происходить акустическое короткое замыкание. Для того чтобы воспроизводить бас, несмотря на это неприятное явление, конструкторы R909 применили два гигантских низкочастотника диаметром 380 мм каждый, которые обладают большими ходами диффузора и способны перемещать весьма значительные воздушные массы. Кроме того, динамик должен обладать очень высокой чувствительностью, и это требование также было выполнено. В результате конструкторам JAMO R909 удалось добиться качественного и точного воспроизведения баса в акустике открытого типа, отказавшись при этом от «вредоносного» с их точки зрения корпуса и получив все преимущества дипольной акустической системы, одним из которых является отсутствие звукового излучения в боковом направлении. Это позволяет свести к минимуму отражения от боковых стен, а, следовательно, нарисовать более четкую и сфокусированную звуковую картину.

Омниполярные АС

Помимо перечисленных выше типов акустических систем с диаграммами направленности той или иной формы на рынке аудиотехники присутствуют громкоговорители, которые имеют совершенно ненаправленное звучание, т. е. круговую диаграмму направленности на всех частотах. Например, компания MIRAGE является поклонницей так называемых омниполярных громкоговорителей, в которых применяются динамики с вертикальной акустической осью. На оси динамиков устанавливаются специальные симметричные акустические рассекатели, поэтому звуковая волна, отражаясь от них, равномерно распространяется по кругу в горизонтальной плоскости.
Другой интересный тип акустических систем с круговой диаграммой направленности - это так называемые контрапертурные громкоговорители, о которых мы расскажем чуть подробнее.
Вообще говоря, контрапертурный принцип построения акустических систем был разработан в России. Были изготовлены даже несколько «ходовых» образцов, которые можно было увидеть на «камерных» выставках типа «Российского хай-енда» и более массовом «Hi-Fi Show». Однако серьезное развитие контрапертурный принцип получил только сейчас, когда за их выпуск принялась итальянская компания Bolzano Villetri.
Итак, в чем же заключается основная идея этих необычных громкоговорителей? Суть ее такова: два одинаковых СЧ/НЧ динамика, помещенные каждый в своем корпусе, располагаются так, чтобы излучающие поверхности их диффузоров смотрели друг на друга. Акустическая ось динамиков при этом вертикальна. На каждый из двух громкоговорителей подается один и тот же звуковой сигнал, который заставляет их совершать колебания, причем эти колебания происходят в фазе. Излучаемые динамиками звуковые волны встречаются в пространстве между ними и вызывают симметричную деформацию воздушного столба, которая приводит к абсолютно ненаправленному в горизонтальной плоскости излучению звука. В качестве аналогии здесь можно привести камень, брошенный в воду и расходящиеся от него круги. Если посмотреть на картину распространения звука контрапертурных АС в горизонтальной плоскости, то она будет точно такая же.
Помимо низких и средних частот акустические системы должны воспроизводить высокие, и именно с их направленностью, как мы уже говорили, связаны наибольшие конструктивные трудности. В данном случае разработчики предложили достаточно простое, но оригинальное решение. Два одинаковых твитера помещаются в пространстве между контрапертурными СЧ/НЧ динамиками, причем их излучающие поверхности направлены уже противоположно. Таким образом, диффузоры низкочастотных громкоговорителей, имеющие коническую форму, выполняют роль акустических рассекателей для твитеров, и излучаемые высокие частоты также имеют круговую диаграмму направленности. Что получает слушатель от применения контрапертурных акустических систем?
Во-первых, их звук, являясь ненаправленным, имеет одинаковые частотные характеристики для любого направления распространения. Это значит, что для качественного прослушивания нет необходимости усаживаться строго на пересечении звуковых осей громкоговорителей. В любой точке комнаты характеристики звука будут одинаковыми. Во-вторых, не стоит забывать про отражения от стен помещения.
При применении традиционных акустических систем мы имеем следующую ситуацию: звук, излучаемый громкоговорителем, имеет хорошую частотную характеристику во фронтальном направлении и гораздо более проблемную под углом к акустической оси (это связано с тем, что высокие частоты распространяются в основном во фронтальном направлении, а при отклонении от него в звучании начинают преобладать низкочастотные составляющие).
Поскольку боковые стены помещения отражают именно этот «проблемный» звук, то результирующая звуковая картина в месте прослушивания будет складываться из «хорошего» прямого звука и «плохого», обедненного на верхах, отраженного. Без специальной акустической обработки помещения результат может вполне заставить разочароваться в качестве даже самых высококлассных АС. В контрапертурных «одинаково направленных» АС звук, пришедший к слушателю напрямую и отраженный от стен, имеет более близкие характеристики, поскольку в данном случае на формирование АЧХ отраженной волны оказывает влияние только частотная характеристика поглощения боковых стен.

В данный момент сложно указать на какие-либо специфические особенности звучания контрапертурных АС Bolzano Villetri. Мы обязательно остановимся более подробно на этих необычных колонках в ближайших тестах нашего издания. Предварительные прослушивания этой акустики продемонстрировали очень комфортное и естественное, хотя и немного непривычное звучание.

Итак, мы рассмотрели наиболее распространенные типы направленности акустических систем. На вопрос, какой из этих типов подойдет именно вам, мы не можем дать однозначный ответ. С точки зрения пространственной достоверности воспроизведения, вероятно, выигрывают традиционные акустические системы с фронтальными динамиками, а также дипольные громкоговорители. Они позволяют наиболее точно передавать пространственные эффекты, заложенные в фонограмму звукорежиссером, не привнося в нее ничего от себя. Стоит, однако, отметить, что все это справедливо только для специально оборудованных и подготовленных помещений прослушивания. В обычной жилой комнате результат спрогнозировать сложно. Биполярные акустические системы хорошо подходят в качестве тыловых каналов в домашнем кинотеатре в небольшом или неподготовленном помещении. Они имеют более равномерную направленность и создают позади слушателя распределенную звуковую картину. Иногда это то, чего не хватает для получения максимального эффекта присутствия, т. е. того, ради чего мы и покупаем многоканальные звуковые системы. Контрапертурная акустика с круговой диаграммой направленности создает равномерное и комфортное звучание. Она в меньшей, чем другие типы АС, степени зависит от акустических характеристик комнаты прослушивания.

Как бы то ни было, мы не ставили перед собой задачи дать в этой статье «рецепты» правильного звучания. Мы просто надеемся, что она поможет вам правильно формулировать вопросы и четко ставить цели, которых вы хотите добиться при построении домашней аудиосистемы. Дальше, что называется, дело техники. Удачи!

Страница подготовлена по материалам сайта http://www.shop.danceguitar.ru/


Адрес администрации сайта:

НЕ НАШЕЛ, ЧТО ИСКАЛ? ПОГУГЛИ:

Ирина Алдошина

Дата первой публикации:

окт 2008

Корпуса акустических систем. Конструкции.

В предыдущих статьях были рассмотрены конструкции различных видов излучателей, которые являются основными элементами всех видов акустических систем. Однако неотъемлемой частью любой акустической системы является также корпус.

Корпус (рис. 1) выполняет многообразные функции. В области низких частот он блокирует эффект "короткого замыкания", возникающий за счет сложения излучаемого звука от передней и тыловой поверхностей диафрагмы в противофазе, что приводит к подавлению низкочастотного излучения. Применение корпуса позволяет увеличить интенсивность излучения на низких частотах.

Кроме того, он увеличивает механическое демпфирование громкоговорителей, что позволяет "сгладить" резонансы и уменьшить неравномерность амплитудно-частотной характеристики. Корпус оказывает существенное влияние не только в области низких, но и в области средних и высоких частот за счет дифракционных эффектов и за счет колебаний стенок корпуса, что, естественно, вносит существенный вклад в увеличение линейных и нелинейных искажений и в качество звучания акустических систем. Именно поэтому вопросам проектирования корпусов акустических систем (выбору конфигурации, материала стенок, вибродемпфирующих и виброизоляционных покрытий и т. д.) все фирмы-производители уделяют большое внимание.

Наиболее распространенными типами низкочастотного оформления в конструкциях современных корпусов акустических систем являются: бесконечный экран (infinitive baffle), закрытый корпус (closed box, acoustical suspensions, sealed box), корпус с фазоинвертором (vented-box, ported-box, bass-reflection и др.), лабиринт (labyrinth), трансмиссионная линия (transmission-line), корпус с симметричной нагрузкой (bandpass enclosure), с пассивным радиатором (passive radiator, drone cone) и др.

Остановимся на конструкции наиболее известных из них.

Бесконечный экран
Этот тип оформления должен удовлетворять двум условиям: представлять бесконечно большую поверхность, в которой установлен громкоговоритель, и иметь большой объем воздуха позади нее. Максимальным приближением к такому оформлению является установка громкоговорителя в стене комнаты с достаточно большим объемом за ним. Только при выполнении обоих условий обеспечивается полное предотвращение эффекта короткого замыкания и эффекта демпфирования колебаний со стороны воздушного объема.

Частотная характеристика громкоговорителя в таком "истинно бесконечном экране" зависит от значения его резонансной частоты и спадает со скоростью 12 дБ/окт. Следует, правда, отметить, что отсутствие демпфирования при установке громкоговорителя в такой вид оформления приводит к эффекту "бубнения" на низких частотах (особенно слышимому у громкоговорителей больших размеров).

Использование плоских экранов конечных размеров или "свернутых" экранов (то есть экранов с согнутыми краями - открытых корпусов) в качестве низкочастотных оформлений было довольно широко распространено в начальный период развития производства выносных акустических систем в 30-50 годы. Однако это приводило к созданию акустических систем с очень большим объемом корпуса (600-800 куб. м), поскольку минимальный размер, при котором не будет короткого замыкания, определяется соотношением: 2L = l/2, где L - расстояние от центра до края экрана, l - длина волны. Например, для частоты 100 Гц, где длина волны l = 3,4 м, величина L составляет 0,85 м.

Если экран свернуть, то есть перейти к открытому оформлению, то его размер можно уменьшить только процентов на тридцать. В противном случае получаются слишком длинные боковые стенки (типа трубы), в которых возникают резонансные явления, и явление дифракции на открытых краях, окрашивающее звук. Поэтому в выносных акустических системах такие типы оформлений практически не используются, хотя встроенные в стены АС применяются достаточно часто, особенно в аппаратных студий звукозаписи (они называются "in-wall", "in-ceiling infinitive baffle", "wall-mount panel" и т. д.).

Термин "infinitive baffle" употребляется иногда также для оформлений типа "закрытый ящик" достаточно больших размеров, в которых не происходит сдвига резонансной частоты громкоговорителя по сравнению с излучением в свободное пространство (при этом отношение гибкости подвеса к гибкости воздуха должно быть меньше, чем 3).

Закрытый корпус
В период значительного увеличения объемов массового производства выносных акустических систем, то есть примерно в пятидесятые годы, начали активно применяться закрытые корпуса "компрессионного" типа, что позволило значительно уменьшить размеры АС, сделать их удобными для применения в жилых комнатах и при этом сохранить воспроизведение низкочастотной части диапазона (рис. 2).

Принцип работы компрессионного оформления состоит в том, что в нем используются громкоговорители с очень гибким подвесом и большой массой, то есть низкой резонансной частотой. В этом случае упругость воздуха в корпусе становится определяющим фактором. Именно она начинает вносить основной вклад в восстанавливающую силу, приложенную к диафрагме (при этом отношение гибкости подвеса к гибкости воздуха должно быть не меньше, чем 3...4). Поскольку воздух - среда линейная (при относительно малых уровнях звукового давления), то это позволяет, кроме возможности уменьшить объем корпуса, уменьшить также нелинейные искажения.

Низкочастотные громкоговорители для таких систем должны проектироваться особым образом (иметь большую гибкость подвеса, большую массу диафрагмы, особую конструкцию звуковой катушки и магнитной цепи для обеспечения больших смещений и т. д.). Теория проектирования закрытых корпусов была изложена в работах Small-Thiele, в настоящее время их проектирование производится с помощью компьютерных программ.

При правильно подобранных электромеханических параметрах громкоговорителей и корпуса в акустических системах такого типа можно получить максимально гладкую форму АЧХ (рис. 3) на низких частотах, обеспечить чистое, сухое звучание басов. Именно поэтому многие ведущие фирмы (например, KEF, Tannoy и др.) при создании акустических систем категории Hi-Fi и контрольных агрегатов применяют корпуса закрытого типа.

Корпус с фазоинвертором
Это корпус, в котором сделано отверстие, что позволяет использовать излучение тыльной поверхности диффузора (рис. 4). Максимальный эффект достигается в области частоты резонанса колебательной системы, образуемой массой воздуха в отверстии или трубе и гибкостью воздуха в корпусе.

Наличие небольшого отверстия не нарушает компрессионного принципа работы громкоговорителя в корпусе, но дает возможность значительно увеличить уровень звукового давления на частоте резонанса (сравнительная форма АЧХ в области низких частот показана на рис. 3), уменьшить уровень нелинейных искажений, значительно расширить возможности настройки параметров акустической системы. Следует отметить, что наличие фазоинвертора требует значительно большего искусства при проектировании, так как неточная настройка приводит к появлению переходных искажений ("затянутых басов").

В современных моделях используются несколько разновидностей фазоинверсных систем.

1. Корпус со специальной трубой , нагруженной на отверстие (ducted port enclosures) - это позволяет уменьшить размеры корпуса и с помощью изменения размеров трубы улучшить настройку фазоинвертора (рис. 4а).

2. Корпус с пассивным излучателем (passive radiator, рис. 5); в отверстие корпуса устанавливается пассивный (то есть без магнитной цепи) громкоговоритель, колебания которого возбуждаются за счет колебаний объема воздуха, заключенного в корпус. Регулируя массу и гибкость такого громкоговорителя, можно получать такой же эффект, как и при настройке фазоинвертора.

3. Лабиринт (labyrinth, рис. 6) представляет собой вариант низкочастотного корпуса с фазоинвертором, в котором устанавливаются специальные перегородки, создающие своего рода лабиринт для потока воздуха. Когда длина лабиринта достигает 1/4 длины волны на частоте резонанса низкочастотного громкоговорителя, он действует аналогично соответствующим образом настроенному фазоинвертору. Применение лабиринта расширяет возможности для настройки на более низкие частоты. Лабиринт обычно имеет серию резонансных пиков на гармониках, соответствующих основной резонансной частоте трубы. Они демпфируются размещением специальных звукопоглощающих материалов на стенках корпуса.

4. Трансмиссионная линия (transmission line) является вариантом лабиринта. В современных конструкциях акустических систем используются ее многочисленные разновидности: четвертьволновая (quarter wave), первого порядка (first order), с переменным сечением (tapered), трапецеидальная (trapezoidal) и т. д.

Трансмиссионная линия отличается от лабиринта тем, что звукопоглощающим материалом забивается весь объем корпуса, и поперечное сечение линии делается переменным - больше у конуса, меньше у отверстия. Звукопоглощающий материал подбирается таким образом, чтобы обеспечить демпфирование высокочастотных резонансов. Корпуса такого типа очень сложны для настройки, поэтому существуют их упрощенные варианты (типа "tapered pipe"), в которых используется просто труба переменного сечения с обратным соотношением площадей: больше у диффузора, меньше у отверстия с заполнением объемным поглотителем.

5. Фазоинверсное оформление с двойной камерой (double-chamber, рис. 7) или с несколькими камерами (multichamber port). Применение двойных или нескольких камер позволяет обеспечить согласование нагрузки с низкочастотным громкоговорителем в значительно более широком диапазоне частот. На амплитудно-частотной характеристике такой системы отчетливо видны два резонансных пика: один соответствует настройке низкочастотного громкоговорителя на полный объем двух камер, другой - на одну камеру; если эти камеры равных объемов, то эти частоты разделены ровно на октаву.

Обычно двойная камера имеет одно отделение в два раза больше другого. Оформления с двойными камерами обеспечивают большее демпфирование колебаний громкоговорителей, что дает значительные преимущества при использовании их в мощных акустических системах, например, для дискотек, музыкальных ансамблей и др., так как снижает вероятность перегрузки и выхода из строя низкочастотных громкоговорителей.

6. Оформления типа полосовых фильтров (bandpass systems, рис. 8) - это также разновидность фазоинверсных систем, в которых громкоговоритель установлен внутри закрытого корпуса и излучает не прямо в окружающую среду, а через корпус с фазоинверсным отверстием. Применение таких систем позволяет регулировать спад АЧХ не только в сторону низких частот, но и в сторону высоких частот (то есть действует подобно полосовому фильтру). Подбирая размеры и тип камеры (закрытый, с фазоинвертором, "двойным фазоинвертором" и др.), можно менять крутизну спада АЧХ, поэтому по аналогии с фильтрами их называют "полосовыми" оформлениями. Например, полосовое оформление четвертого порядка содержит переднюю камеру с фазоинвертором, заднюю - закрытую, скорость спада при этом в сторону высоких частот 24 дБ/окт, то есть соответствует фильтру четвертого порядка; полосовое оформление шестого порядка имеет обе камеры с фазоинвертором, при этом спад - 36 дБ/окт.

Если в корпусе установлены два одинаковых громкоговорителя на один фазоинвертор, то это называется "низкочастотное оформление с симметричной нагрузкой" (если громкоговорители включены в противофазе, то такое соединение называется "push-pull"). Такого типа оформления часто используются в настоящее время в низкочастотных блоках (субвуферах), которые широко применяются в аппаратуре для домашнего кинотеатра и др.

В этих же блоках используются двойные оформления (типа Isobarik), когда два низкочастотных громкоговорителя нагружены на закрытую дополнительную камеру. Один работает на внутренний объем (закрытый или с фазоинвертором), другой излучает во внешнюю среду - это позволяет снизить частоту среза, уменьшить уровень гармоник, особенно четных, и уменьшить общий объем системы (рис. 9).

7. Рупорное оформление (horn) используется как "акустический трансформатор", обеспечивающий улучшение условий согласования (то есть повышающий акустическое сопротивление) громкоговорителя со средой. Это позволяет существенно (в три и более раза) увеличить КПД акустической системы и улучшить характеристики направленности. Однако для низких частот размеры рупора получаются слишком большими, поэтому в некоторых мощных акустических системах используются свернутые рупоры (folded horn, рис. 10), иногда со специальными компрессионными камерами, что позволяет получать большие уровни звукового давления на низких частотах.

Кроме перечисленных, наиболее распространенных видов оформлений, в каталогах, журналах, рекламах упоминаются и другие.

Теория расчета основных видов низкочастотных оформлений глубоко проработана и практически полностью переведена на компьютерные методы. Приближенные методы расчета будут приведены в следующей статье.

Вопрос о достоинствах и недостатках каждого вида оформлений довольно сложен, конкретный выбор зависит от назначения и спецификации данной акустической системы.

Влияние формы корпуса на АЧХ
В области средних и высоких частот существенное влияние на форму амплитудно-частотной характеристики и качество звучания акустических систем оказывает внешняя конфигурация корпуса (то есть его форма, наличие отражающих выступов и впадин, характер округления углов ширина и степень демпфирования его передней стенки и пр.), что обусловлено влиянием дифракционных эффектов. В последние годы, когда параметры высококачественных акустических систем существенно улучшились, вклад дифракционных эффектов в общий уровень искажений стал более заметен, поэтому анализу их влияния на выходные характеристики акустических систем посвящены многочисленные исследования.

Результаты расчетов и эксперименты показали, что использование корпусов со сглаженными углами, обтекаемой формы (в виде сфер, эллипсоидов, цилиндров и др.), с несимметричным расположением громкоговорителей значительно уменьшает неравномерность АЧХ и снижает фазовые искажения (рис. 11).

Однако в связи с тем, что технология изготовления таких корпусов значительно сложнее и дороже, подавляющее большинство акустических систем выпускается в корпусах прямоугольной формы. При этом применяются специальные меры для уменьшения дифракционных эффектов на углах передней панели: специальное заглушение панели, оптимизация соотношения размеров передней панели и глубины корпуса, подбор несимметричного расположения громкоговорителей и др.

Стремление сдвинуть дифракционные пики-провалы на АЧХ в более высокочастотную область и тем самым снизить их влияние, заставляет использовать максимально узкие передние панели (насколько позволяют размеры низкочастотного громкоговорителя). Современная техника цифровых измерений дает возможность количественно оценить вклад дифракционных эффектов в общий уровень неравномерности АЧХ (он может достигать 4 дБ) и рассчитать искажения ГВЗ (до 0,5 мс). Полученные значения оказались достаточно высоки, что заметно сказывается на качестве звучания, поэтому сложные внешние конфигурации многих современных акустических систем обусловлены не только эстетическими соображениями, но и стремлением улучшить их параметры и качество звучания.

Влияние вибрации корпуса на АЧХ
Корпус акустической системы в области средних и высоких частот вносит также значительные искажения в воспроизводимый сигнал из-за колебаний стенок корпуса и заключенного в них объема воздуха. Это приводит к изменению формы АЧХ: снижению уровня звукового давления на низких частотах и увеличению неравномерности на средних; возрастанию нелинейных искажений и увеличению переходных процессов, что ухудшает качество звучания акустических систем, внося так называемые "ящичные" (boxes) призвуки.

Анализ механизмов возникновения звукоизлучения из-за вибраций стенок корпуса показывает, что существуют два пути передачи колебаний от громкоговорителя к стенкам корпуса:
- возбуждение колебаний внутреннего объема воздуха в корпусе от тыльной поверхности диафрагмы и передача через него колебаний на стенки корпуса;
- прямая передача вибраций от диффузородержателя на переднюю стенку, а от нее на боковые и на заднюю.

В области частот примерно до 600 Гц существенный вклад вносят оба механизма передачи, на более высоких частотах в основном играет роль второй механизм. Для уменьшения влияния этих явлений используют различные конструктивные меры, а также различные способы звуко- и виброизоляции и поглощения.

Для уменьшения передачи колебаний за счет внутреннего объема корпуса и демпфирования его внутренних резонансов применяют различные методы звукопоглощения: обычно корпус полностью или частично заполняется тонковолокнистыми упругопористыми материалами (синтетические волокна, минеральная вата и др.).

Для увеличения коэффициента поглощения в области низких частот необходимо увеличивать толщину и плотность заполнения. Однако чрезмерное заполнение корпуса звукопоглощающим материалом может привести к снижению уровня звукового давления на низких частотах и к излишней "сухости" басов. Рекомендуемая плотность заполнения составляет 8-11 кг на куб. м. За последние годы создано новое поколение звукопоглощающих материалов, обеспечивающих эффективное демпфирование резонансных колебаний внутреннего объема в заданной области частот. В некоторых моделях используются перфорированные и сотовые панели поглотителей внутри корпуса. Внесение поглотителя значительно снижает неравномерность АЧХ.

Для уменьшения колебаний стенок корпуса необходимо применение мер, направленных на увеличение его звукоизолирующей способности. Звукоизолирующая способность корпуса акустической системы состоит в следующем: часть звуковой энергии, излучаемой внутрь корпуса диафрагмой громкоговорителя, поглощается в слоях звукопоглощающего материала, часть попадает на стенки корпуса.

В стенках происходят следующие процессы: некоторая доля энергии возвращается обратно внутрь корпуса, другая рассеивается в материале стенок из-за потерь на трение и остаточную деформацию, третья проходит в окружающую среду за счет упругих продольных и поперечных колебаний стенок и через щели и поры в материале. Задача выбора конструкций стенок корпуса состоит в том, чтобы максимально увеличить коэффициент звукоизоляции, то есть уменьшить долю прошедшей энергии по отношению к падающей.

Коэффициент звукоизоляции существенно зависит от жесткости и массы стенок. Поэтому для уменьшения общего уровня звукоизлучения от стенок (то есть для повышения их звукоизоляции) применяются различные меры для повышения их жесткости и массы.

1. Использование для стенок тяжелых и жестких материалов: кирпича, мрамора, пенобетона и др. Эффект звукоизоляции получается очень хороший (до 30 дБ и более), соответственно улучшается качество звучания акустических систем. Но такие корпуса оказываются слишком тяжелыми и дорогими для широкого применения, что затрудняет их изготовление и эксплуатацию. Поэтому в качестве материалов для корпусов обычно используются: многослойная фанера, древесностружечная плита (ДСП), древесноволокнистая плита (ДВП) и др. (толщина фанеры для боковых стенок выбирается в пределах 18...20 мм, для лицевых - 20...40 мм).

2. Применение многослойных материалов из слоев различной жесткости и плотности, что позволяет существенно уменьшить колебания стенок.

3. Использование специальных вибропоглощающих покрытий стенок корпуса. В зависимости от диапазона резонансных частот стенок выбираются "жесткие", "мягкие" или армированные покрытия.

4. Применение конструктивных мер: ребер жесткости, стяжек, распорок между стенками, разделение корпуса на отдельные отсеки и т. д.

Анализ второго способа возбуждения колебаний стенок корпуса показывает, что при колебаниях подвижной системы громкоговорителя возбуждаются колебания диффузородержателя, которые передаются на переднюю панель. Затем возникают интенсивные продольные колебания боковых стенок, которые передают вибрации на заднюю и верхние панели.

В области низких частот стенки корпуса колеблются синфазно. В этой области уровень виброускорения на стенках (а, следовательно, и уровень звукоизлучения от них) определяется их общей упругостью и упругостью заключенного в них объема воздуха. По мере повышения частоты начинаются интенсивные изгибные колебания всех стенок корпуса, амплитуды которых имеют максимальные значения на резонансных частотах. Измерения виброускорения на стенках корпусов показывают, что наибольшие амплитуды вибраций имеют место на передней и задней стенках, затем на верхней и боковых. Общая картина распределений на стенках корпуса показана на рис. 12.

Для борьбы с прямой передачей вибраций применяют методы виброизоляции и вибропоглощения. Эффект виброизоляции обеспечивается применением упругих амортизаторов при креплении громкоговорителя к корпусу, а иногда и передней стенки корпуса к боковым. При конструировании высококачественных акустических систем применяют сплошные резиновые прокладки между диффузородержателем и передней панелью, локальные опорные виброизоляторы для крепления винтов, амортизирующие прокладки для крепления передней панели к боковым, развязку диффузородержателя от передней панели за счет дополнительной опоры его на дно и т. д. Все эти меры позволяют уменьшить передаваемый уровень вибрации на боковые и задние стенки корпуса на 10...11 дБ.

В современных высококачественных акустических системах корпус представляет собой чрезвычайно сложную и дорогостоящую конструкцию (рис. 13). В качестве критерия эффективности принятых мер по звукоизоляции корпуса принято считать разницу между уровнем звукового давления, излучаемого стенками корпуса, и уровнем звукового давления от акустической системы в целом, она должна составлять не менее 20 дБ.

Кроме объективных измерений при проектировании проводится прослушивание акустических систем в корпусах различной конструкции, результаты которых подтверждают большое влияние корпуса на объективные и субъективные характеристики акустических систем.

Посвященном акустике помещения мы выяснили, что любая комната - своего рода резонатор, драматически влияющий на характер звучания системы. Теперь пришла пора поговорить непосредственно об источниках этого самого звучания, то есть об акустических системах.

Чтобы как следует разобраться в процессах, происходящих в ящике, на стенке которого смонтирован один или несколько динамиков, нужно вдумчиво прочитать пару-тройку книжек, в каждой из которых формул больше, чем во всем школьном курсе физики. Я забираться в такие дебри не буду, так что не стоит данный материал как исчерпывающий анализ или руководство по постройке аудиофильских колонок. Однако очень надеюсь, что он поможет начинающим меломанам (да и некоторым хроническим тоже) как следует сориентироваться в разнообразии акустических решений, каждое из которых его разработчики, разумеется, называют единственно правильным.

Некоторое время после изобретения в 1924 году электродинамического излучателя с коническим диффузором (окей, просто динамика), его деревянное обрамление исполняло в первую очередь декоративные и защитные функции. Оно и понятно - после долгих лет прослушивания пластинок через слюдяные мембраны и раструбы граммофонов, саунд нового устройства и безо всякой акустической доработки казался просто апофеозом благозвучия.

Мембраны граммофонов изготавливались чаще всего из алюминия или слюды

Однако технологии записи быстро совершенствовались и стало понятно, что более-менее правдоподобно воспроизвести слышимый диапазон динамиком, просто закрепленном на некой подставке, крайне проблематично. Дело в том, что предоставленная сама себе динамическая головка находится в состоянии акустического короткого замыкания. То есть волны от фронтальной и тыловой поверхностей диффузора, излучаемые, понятное дело, в противофазе, беспрепятственно накладываются друг на друга, что самым печальным образом отражается на эффективности работы, и в первую очередь на передаче басов.

Кстати, в процессе данного рассказа я буду чаще всего рассуждать именно о низких частотах, так как их воспроизведение - ключевой момент в работе любого корпуса АС. ВЧ-драйверы в силу малой длины излучаемых волн во взаимодействии с внутренним объемом колонки вообще не нуждаются, и чаще всего полностью от него изолированы.

Душа нараспашку

Самый простой способ отделить фронтальное излучения динамика от тылового - смонтировать его на щите как можно большего размера. Из этой простой идеи и родились, собственно, первые акустические системы, представлявшие собой ящик с открытой задней стенкой, поскольку для компактности края щита просто взяли, да и загнули под прямым углом. Однако в плане воспроизведения басов успехи подобных конструкций впечатляли не слишком. Помимо несовершенства корпуса проблема была еще и в очень небольшом по современным понятиям ходе подвески диффузоров. Чтобы хоть как-то выйти из положения, использовались динамики как можно большего размера, способные развивать приемлемое звуковое давление при небольшой амплитуде колебаний.


PureAudioProject Trio 15TB с 15-дюймовыми НЧ-драйверами на трехслойных бамбуковых панелях

Несмотря на кажущуюся примитивность подобных конструкций, у них имелись и кое-какие достоинства, причем настолько специфические и интересные, что адепты открытых АС не перевелись до сих пор.

Начать с того, что отсутствие каких-либо препятствий на пути звуковых волн – лучший путь к повышению чувствительности. Момент этот особенно ценен для аудиофильских ламповых усилителей, в особенности однотактных или лишенных обратной связи. Бумажные диффузоры большого диаметра даже на мощности порядка четырех-пяти ватт способны создать довольно-таки внушительный, и при этом на удивление открытый и свободный саунд.


При высоте 1,2 м в мире открытой акустики Jamo R907 считаются практически компактами

Что же касается тылового излучения, то чтобы не вносить искажений в прямой звук, оно должно приходить к слушателю с заметной задержкой (свыше 12-15 мс) - в таком случае его влияние ощущается как легкая реверберация, лишь добавляющая в саунд воздуха и расширяющая музыкальное пространство. Тонкость в том, что для создания этой самой «заметной задержки» колонки, разумеется, должны быть расположены на изрядном расстоянии от стен. К тому же большая площадь передней панели и внушительные размеры НЧ-драйверов соответствующим образом сказываются на общих габаритах АС. Одним словом, обладателей небольших и даже средних жилых комнат просьба не беспокоиться.

Кстати, частный случай открытых систем - акустика, построенная на электростатических излучателях. Только за счет почти невесомой диафрагмы большой площади, ко всем вышеописанным преимуществам, у электростатов добавляется способность филигранно передавать даже самые резкие динамические контрасты, а благодаря отсутствию разделения сигнала в зонах СЧ и ВЧ, еще и завидная тембральная точность.

Открытое оформление

Плюсы: Высококлассные открытые колонки - отличный способ получить реальный кайф от прослушивания пуристских ламповых однотактников.

Минусы: Про жирные компрессионные басы лучше забыть сразу. Весь звуковой тракт должен быть подчинен идее открытой акустики, а сами колонки придется выбирать из крайне ограниченного числа предложений.

Запертый в ящике

С ростом мощности и улучшением параметров усилителей сверхвысокая чувствительность акустики перестала быть главным камнем преткновения, а вот проблемы неравномерности АЧХ, и в особенности правильного воспроизведения басов, стали еще более актуальными.

Гигантский шаг к прогрессу в данном направлении сделал в 1954 году американский инженер Эдгар Вильчур. Он запатентовал акустическую систему закрытого типа, и это был отнюдь не трюк в стиле нынешних патентных троллей.


Патентная заявка Эдгара Вильчура на АС в закрытом оформлении

К тому моменту уже был изобретен фазоинвертор и, понятное дело, к ящику с дном динамик тоже примеряли неоднократно, только вот ничего хорошего из этого не получалось. Из-за упругости замкнутого объема воздуха приходилось или терять существенную часть энергии диффузора, или делать корпус непомерно большим, чтобы снизить градиент давления. Вильчур же решил обратить зло во благо. Он сильно понизил упругость подвеса, переложив таким образом контроль за движением диффузора на объем воздуха - пружину куда более линейную и стабильную, чем гофр или резиновое кольцо.


В закрытом ящике движения диффузора контролируются воздухом - в отличие от бумаги или резины он не стареет и не изнашивается

Так удалось не только полностью избавиться от акустического короткого замыкания и поднять отдачу на низких частотах, но и ощутимо сгладить АЧХ на всем ее протяжении. Однако обнаружился и минорный момент. Выяснилось, что демпфирование замкнутым объемом воздуха приводит к повышению резонансной частоты подвижной системы и резкому ухудшению воспроизведения частот ниже данного порога. Для борьбы с такой неприятностью пришлось увеличивать массу диффузора, что логичным образом привело к снижению чувствительности. Плюс поглощение внутри «черного ящика» чуть ли не половины акустической энергии, не могло не внести вклада в снижение звукового давления. Одним словом, новому типу колонок потребовались усилители довольно серьезной мощности. К счастью, на тот момент они уже существовали.


Сабвуфер SVS SB13-Ultra с закрытым акустическим оформлением

Сегодня закрытое оформление применяется по большей части в сабвуферах, особенно в тех, что претендуют на серьезное музыкальное исполнительство. Дело в том, что для домашних кинотеатров энергичная отработка самых низких басов часто оказывается важнее динамической и фазовой точности на всем протяжении НЧ-диапазона. А вот объединив относительно компактный закрытый саб с приличными сателлитами, можно добиться куда более правильного звука - пускай и не наполненного сверхглубокими басами, зато крайне быстрого, собранного и четкого. Всё вышесказанное можно отнести и на счет полнодиапазонных колонок, «закрытые» модели которых изредка появляются на рынке.

Закрытый ящик

Плюсы: Образцовая скорость атаки и разрешение в низкочастотном диапазоне. Относительная компактность конструкции.

Минусы: Требуется достаточно мощный усилитель. Сверхглубоких басов на грани инфразвука добиться весьма затруднительно.

Дело - труба

Еще одним способом обуздания противофазного тылового излучения стал фазоинвертор, по-русски буквально «разворачиватель фазы». Чаще всего он представляет собой полую трубку, смонтированную на передней или задней поверхности корпуса. Принцип работы понятен из названия и незамысловат: раз избавляться от излучения обратной стороны диффузора трудно и нерационально, значит нужно синхронизировать его по фазе с фронтальными волнами и использовать на благо слушателей.


Амплитуда и фаза движения воздуха в фазоинверторе меняются в зависимости от частоты колебаний диффузора

По сути труба с воздухом является самостоятельной колебательной системой, получающей импульс от движения воздуха внутри корпуса. Обладая совершенно определенной частотой резонанса, фазоинвертор работает тем эффективнее, чем ближе колебания диффузора к частоте его настройки. Звуковые волны более высоких частот сдвинуть с места воздух в трубе просто не успевают, а более низкие хотя и успевают, но чем они ниже, тем сильнее смещается фаза излучения фазоинвертора, и, соответственно, его эффективность. Когда поворот фазы достигает 180 градусов, тоннель начинает откровенно и весьма эффективно глушить звук басового драйвера. Именно этим объясняется очень крутое падение звукового давления АС ниже частоты настройки фазоинвертора - 24 дБ/окт.


В борьбе с турбулентными призвуками конструкторы фазоинверторов постоянно экспериментируют

У закрытого ящика, между прочим, на частотах ниже резонансной спад АЧХ куда более плавный - 12 дБ/окт. Однако в отличие от глухой коробки, коробка с трубой в боковой стенке не заставляет конструкторов идти на любые хитрости ради максимального снижения резонансной частоты самого динамика, что довольно хлопотно и дорого. Тоннель фазоинвертора настроить куда проще - достаточно подобрать ее внутренний объем. Это, правда, в теории. На практике, как всегда, начинаются непредвиденные сложности, например, на больших уровнях громкости воздух на выходе из отверстия может шуметь почти как ветер в печном дымоходе. К тому же инертность системы частенько становится причиной падения скорости атаки и ухудшения артикуляции на басах. Одним словом, простор для экспериментов и оптимизации перед конструкторами фазоинверторных систем открывается просто невероятный.

Фазоинвертор

Плюсы: Энергичная отдача на НЧ, возможность воспроизведения самых глубоких басов, относительная простота и дешевизна изготовления (при изрядной сложности расчета).

Минусы: В большинстве реализаций проигрывает закрытому ящику в скорости атаки и четкости артикуляции.

Обойдемся без катушки

Попытки избавиться от генетических проблем фазоинвертора, а заодно и сэкономить на объеме корпуса без ущерба для глубины баса, натолкнули разработчиков на идею заменить полую трубу на мембрану, приводимую в движение колебаниями все того же рабочего объема воздуха. Проще говоря, в закрытом ящике установили еще один низкочастотный драйвер, только без магнита и звуковой катушки.


Пассивный излучатель может увеличить эффективную поверхность диффузора вдвое, или даже в трое, если в одной колонке они установлены парой

Конструкция получила название «пассивный излучатель» (Passive radiator), которое сплошь и рядом не слишком грамотно переводят с английского как «пассивный радиатор». В отличие от трубы сабвуфера, пассивный диффузор занимает куда меньше пространства в корпусе, не так критичен к расположению, и к тому же он, как и воздух внутри закрытого ящика, демпфирует ведущий драйвер, сглаживая его АЧХ.


Пассивный излучатель сабвуфера REL S/5. Основной драйвер направлен в пол

Еще один плюс - с увеличением площади излучающей поверхности для достижения нужного звукового давления требуется меньшая амплитуда колебаний, а значит, снижаются последствия нелинейной работы подвеса. Колеблются оба диффузора синфазно, а резонансная частота свободной мембраны настраивается точной регулировкой массы - к ней попросту подклеивают грузик.

Пассивный излучатель

Плюсы: Компактность корпуса при впечатляющей глубине басов. Отсутствие фазоинверторных призвуков.

Минусы: Увеличение массы излучающих элементов приводит к росту переходных искажений и замедлению импульсного отклика.

Выход из лабиринта

Акустика, вооруженная фазоинверторами и пассивными излучателями, воспроизводит глубокие басы благодаря резонаторам, работающим при посредничестве воздуха внутри АС. Однако кто сказал, что объем колонки не может играть роль низкочастотного излучателя сам по себе? Конечно может, и соответствующая конструкция называется акустический лабиринт. По сути, она представляет собой волновод, протяженностью в половину или четверть длины волны, на которой планируется добиться резонанса системы. Иными словами конструкция настраивается по нижней границе частотного диапазона АС. Конечно использовать волновод полной длины волны было бы еще эффективнее, но тогда для частоты, скажем, 30 Гц, его пришлось бы делать 11-метровым.


Акустический лабиринт - любимая конструкция акустиков-самодельщиков. Но при желании корпуса самой хитрой формы можно заказать и в готовом виде

Чтобы в колонке разумных размеров уместить даже вдвое более компактную конструкцию, в корпусе устанавливают перегородки, формирующие максимально компактный изогнутый волновод, поперечным сечением примерно равным площади диффузора.

От фазоинвертора лабиринт отличается в первую очередь менее «резонансным» (то есть не акцентированным на определенной частоте) звучанием. Относительно низкая скорость и ламинарность движения воздуха в широком волноводе препятствует возникновению турбулентности, порождающей, как мы помним, нежелательные призвуки. Кроме того, в данном случае драйвер свободен от компрессии, повышающей резонансную частоту, ведь его тыловое излучение не встречает практически никаких препятствий.


Схема для расчета корпуса на dbdynamixaudio.com

Бытует мнение, что акустические лабиринты создают меньше проблем со стоячими волнами в комнате. Однако при малейших просчетах в разработке или изготовлении, стоячие волны могут возникнуть в самом волноводе, который, в отличие от фазоинвертора, имеет куда более сложную структуру резонансов.

Вообще надо сказать, что грамотный расчет и точная настройка акустического лабиринта - процессы весьма непростые и трудоемкие. Именно по этой причине данный тип корпуса встречается нечасто, и только в АС очень серьезного ценового уровня.

Акустический лабиринт

Плюсы: Не только хорошая отдача, но и высокая тональная точность басов.

Минусы: Нешуточные размеры, очень высокая сложность (читай - стоимость) создания правильно работающей конструкции.

Эй, на пароме!

Рупор - самый древний и, пожалуй, самый провокационный тип акустического оформления. Выглядит круто, если не сказать эпатажно, звучит ярко, а временами… В старых фильмах герои иногда кричат друг другу что-то в рупор, и характерная окраска такого звука давно стала мемом и в музыкальном, и в киношном мире.


Avantgarde Acoustics Trio с низкочастотным рупорным массивом Basshorn XD высотой 2,25 м

Конечно от жестяной воронки с ручкой теперешняя акустика ушла очень далеко, но принцип работы все тот же - рупор повышает сопротивление воздушной среды для лучшего согласования с относительно высоким механическим сопротивлением подвижной системы динамика. Таким образом, повышается его КПД, а заодно и формируется четкая направленность излучения. В отличие от всех описанных ранее конструкций, рупор чаще всего используется в высокочастотных звеньях АС. Причина проста - его сечение увеличивается по экспоненте, и чем ниже воспроизводимая частота, тем большим должен быть размер выходного отверстия - уже на 60 Гц потребуется раструб диаметром 1,8 м. Понятно, что такие монструозные конструкции больше подходят для стадионных концертов, где их действительно периодически можно встретить.

Главный козырь адептов рупорного воспроизведения заключается в том, что акустическое усиление позволяет при заданной звуковой отдаче уменьшить ход мембраны, а значит, поднять чувствительность и улучшить музыкальное разрешение. Да-да, снова кивок обладателям ламповых однотактников. К тому же при грамотном расчете раструбы могут играть роль акустических фильтров, круто отсекая звук за пределами своей полосы и позволяя ограничиться самыми простыми, а потому вносящими минимальные искажения электрическими кросоверами, а иногда и вообще обойтись без них.


Системы Realhorns - особая акустика для особых случаев

Скептики же не устают напоминать о характерной рупорной окраске, особенно заметной на вокале, и придающей ему характерную гнусавость. Побороть данную неприятность действительно нелегко, хотя судя по тому, как играют лучшие образцы High-End-рупоров, вполне реально.

Рупор

Плюсы: Высокий акустический КПД, а значит, отличная чувствительность и неплохое музыкальное разрешение системы.

Минусы: Характерная трудноустранимая окраска звука, недетские размеры средне- и тем более низкочастотных конструкций.

Круги на воде

Именно такой аналогией проще всего описать характер излучения контрапертурных акустических систем, впервые разработанных в Советском Союзе в 80-х годах прошлого века. Принцип работы нетривиален: пара одинаковых динамиков смонтирована так, что их диффузоры расположены друг напротив друга в горизонтальной плоскости и двигаются симметрично, то сжимая, то разжимая воздушную прослойку. В результате создаются кольцевые воздушные волны, равномерно расходящиеся во все стороны. Причем характеристики этих волн в процессе их распространения искажаются минимально, а их энергия затухает медленно - пропорционально расстоянию, а не его квадрату, как в случае обычных АС.


Duevel Sirius сочетает элементы рупорной и контрапертурной конструкций

Помимо дальнобойности и круговой направленности, контрапертурные системы интересны на удивление широкой вертикальной дисперсией (порядка 30 градусов против стандартных 4-8 гр.), а также отсутствием доплеровского эффекта. Для динамиков он проявляется в биениях сигнала, вызванных постоянным изменением расстояния от источника звука до слушателя из-за колебаний диффузора. Правда, реальная слышимость данных искажений до сих пор вызывает много споров.

Взаимное проникновение концентрических звуковых полей правой и левой колонок создают весьма обширную и равномерную зону объемного восприятия, то есть по сути вопрос точного позиционирования АС относительно слушателя становится не актуален.


Итальяно-российская контрапертурная акустика Bolzano Villetri

Характерная особенность контрапертуры в том, что звук, приходящий к слушателю фактически со всех сторон, хотя и создает впечатляющий эффект присутствия, не может в полной мере передать информацию о звуковой сцене. Отсюда рассказы слушателей об ощущении летающего по комнате рояля и прочих чудесах виртуальных пространств.

Контрапертура

Плюсы: Широкая зона эффектного объемного восприятия, натуралистичность тембров благодаря нетривиальному использованию волновых акустических эффектов.

Минусы: Акустическое пространство заметно отличается от звуковой сцены, задуманной при записи фонограммы.

И другие...

Если вы думаете, что на этом список вариантов оформления колонок исчерпывается, значит вы сильно недооцениваете конструкторский энтузиазм электроакустиков. Я описал только наиболее ходовые решения, оставив за кадром близкую родственницу лабиринта - трансмиссионную линию, полосовой резонатор, корпус с панелью акустического сопротивления, нагрузочные трубы...


Nautilus от Bowers & Wilkins - одна из самых необычных, дорогих и авторитетных в плане звучания акустических систем. Тип оформления - нагрузочные трубы

Подобная экзотика встречается довольно редко, но иногда она материализуется в конструкции с действительно уникальным звучанием. А иногда и нет. Главное не забывать, что шедевры, как и посредственности, встречаются во всех оформлениях, что бы ни говорили идеологи того или иного бренда.

Подготовлено по материалам журнала "Stereo & Video", июнь 2016 г.